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Abstract

Statistical downscaling (SD) methods used to refine future climate change pro-

jections produced by physical models have been applied to a variety of vari-

ables. We evaluate four empirical distributional type SD methods as applied to

daily precipitation, which because of its binary nature (wet vs. dry days) and

tendency for a long right tail presents a special challenge. Using data over the

Continental U.S. we use a ‘Perfect Model’ approach in which data from a

large-scale dynamical model is used as a proxy for both observations and model

output. This experimental design allows for an assessment of expected perfor-

mance of SD methods in a future high-emissions climate-change scenario. We

find performance is tied much more to configuration options rather than

choice of SD method. In particular, proper handling of dry days (i.e., those with

zero precipitation) is crucial to success. Although SD skill in reproducing day-

to-day variability is modest (~15–25%), about half that found for temperature

in our earlier work, skill is much greater with regards to reproducing the statis-

tical distribution of precipitation (~50–60%). This disparity is the result of the

stochastic nature of precipitation as pointed out by other authors. Distribu-

tional skill in the tails is lower overall (~30–35%), although in some regions

and seasons it is small to non-existent. Even when SD skill in the tails is rea-

sonably good, in some instances, particularly in the southeastern United States

during summer, absolute daily errors at some gridpoints can be large (~20 mm

or more), highlighting the challenges in projecting future extremes.
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1 | INTRODUCTION

Globally the effects of climate change on a variety of
physical variables have been well documented (IPCC,

2013). Physical models in the form of global climate
models (GCMs) and regional climate models (RCMs) are
primary tools used in projecting climate change.
Although both temperature and precipitation are
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changing there are some fundamental differences. While
temperature is eventually expected to rise everywhere the
sign of the precipitation response varies by location, sea-
son, and between models. However, different RCM forced
by the same GCM can yield opposite signed precipitation
responses (Karmalkar, 2018; Holtanova et al., 2019).
Hence, projecting changes in precipitation is particularly
challenging, especially at the regional scale.

Variations in temperature and precipitation differ
fundamentally in that temperature varies more smoothly
both spatially and temporally. Precipitation is often dis-
continuous in both space and time. Accordingly, the dis-
tribution of precipitation is often highly asymmetrical
and skewed whereas temperature is usually more well-
behaved. Additionally, precipitation is characterized by
two aspects: the (binary) occurrence and the actual distri-
bution of amount on wet days, which makes statistical
modelling of precipitation much more difficult.

Of particular relevance is the historical and projected
increase in extreme precipitation events (IPCC, 2013).
Compounding this is the disproportionate contribution of
rare heavy events (Pendergrass and Knutti, 2018) such
that globally—the wettest 12 days typically account for
approximately half the annual total, with this concentra-
tion projected to increase in the future.

To mitigate the deficiencies of physical climate models
and provide information for policymakers better suited for
local areas, a wide variety of statistical downscaling (SD)
techniques have been developed (Maraun and Widmann,
2018). Recently, this author team, members of the Geo-
physical Fluid Dynamics Laboratory (GFDL) Empirical Sta-
tistical Downscaling (ESD) team (https://www.gfdl.noaa.
gov/esd_eval) has focused on evaluating some of these
techniques. For an SD overview and our evaluation
approach philosophy see our earlier works and cited refer-
ences (Dixon et al., 2016; Lanzante et al., 2018; Lanzante
et al., 2019a, hereafter L19a; Lanzante et al., 2019b, hereaf-
ter L19b). As a caution we note that even the best SD
methods will fail to produce credible results if the driving
physical climate model is flawed in its representation of cir-
culation features (Hall, 2014; Maraun et al., 2017). Further-
more, large-scale models such as GCMs may not
realistically represent sub-grid processes needed to simulate
extreme precipitation (Giorgi et al., 2016; Maraun et al.,
2017) in which case high resolution models may be needed.

We use a Perfect Model (PM) approach to test the
‘stationarity assumption’ inherent to all SD methods
which implicitly assume that relationships defined dur-
ing a historical period, intended to calibrate the method
against observations, are valid for use in a future epoch
when the climate has changed. The PM provides ‘future
observations’ which do not exist in the real-world. How-
ever, as discussed below (see 2.1), it is important to note

that the idealized nature of our PM design does not allow
us to assess all sources of non-stationarities.

This is a follow-up to our recent SD work which
assessed and improved representation of tails (L19a) and
assessed daily maximum temperature (L19b). The methods
we consider here and previously (L19a; L19b) are from a
class of SD techniques operating distributionally, thus the
expectation of better suitability than other SD techniques
for reproducing extremes (i.e., tails). It is worth noting that
this exercise is at a severe disadvantage (Maraun, 2013)
because deterministic methods, such as those used here,
cannot bridge the scale mismatch between GCM and obser-
vations, particularly for precipitation, having considerable
sub-grid-scale variability (Chen and Knutson, 2008). Never-
theless there is value in our assessment because: (a) SD out-
put from these methods is widely used in impact studies,
(b) SD methods can provide bias correction, and (c) SD
methods are often embedded in multivariate methods capa-
ble of bridging the scale mismatch.

2 | DATA AND METHODOLOGY

2.1 | Data

GFDL-HiRAM-C360 model data were introduced by
Dixon et al. (2016) and used by Lanzante et al. (2018),
L19a and L19b. We provide only a brief description as the
reader is referred to theses earlier works, especially Dixon
et al. (2016), for more details as well as appendix A of
L19a for data availability.

Daily precipitation covering a rectangular region sur-
rounding the Continental United States (CONUS),
excluding oceanic points, constitute our PM data. Thirty
years of data from a GCM driven by historical forcings
cover the period 1979–2008. Thirty years of data based on
three 10-year ensembles driven by forcings from a high
emissions scenario (RCP8.5) cover the period 2086–2095.

Via our shorthand we refer to historical (future)
observations as Oh (Of), historical (future) model data as
Mh (Mf), and future downscaled output as Df, abbreviat-
ing observations (downscaled) as OBS (DWN). In our PM
setup Oh and Of (which can be considered pseudo obser-
vations) are raw GCM output at a spatial resolution
~25 km, while Mh and Mf are spatially averaged versions
of Oh and Of, respectively, yielding a resolution of
~200 km. The mismatch in spatial resolution is typical of
that for real-world applications providing SD methods
with a realistic challenge. In our PM world we refer to Oh

and Of (Mh and Mf) as OBS (‘model’ or ‘GCM’ output)
even though all are GCM data.

Note that SD methods are typically faced with two
challenges: (a) the spatial scale mismatch between model
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and OBS and (b) model biases. Often in common usage
the term ‘statistical downscaling’ is a misnomer, lacking
explicit mention of (b). The fact that model values repre-
sent spatial averages results in (a). Strictly speaking the
SD methods we use are bias correction methods. Since
we use a single physical model to generate both model
and pseudo-observations, our PM design explicitly intro-
duces only challenge (a), thus we are not able to assess
non-stationarities resulting from model biases in mean
state or in climate change signals. More complex PM's,
deriving ‘OBS’ and ‘GCM’ values from two different
physical models would also explicitly introduce challenge
(b). However, by way of spatial averaging our approach
can introduce biases implicitly by altering distributions.
We have chosen our simpler design in initial work as it
facilitates easier diagnosis.

2.2 | Downscaling methodology

Guided by L19b, we use the two best performing
methods for daily maximum temperature, one conceptu-
ally simple, quantile delta mapping (QDM) (Cannon
et al., 2015) and one more complex, Kernel density dis-
tribution mapping (KDDM) (McGinnis et al., 2015). We
also use Bias correction quantile mapping (BCQM)
(Lanzante et al., 2018) which is both conceptually sim-
ple and very widely used. Finally, we consider PresRat,
a modification of QDM designed specifically for precipi-
tation (Pierce et al., 2015). Note that two of L19b's
methods utilized the anomaly approach which is inap-
propriate for precipitation, a positive definite quantity.
Below we briefly introduce the four methods—the inter-
ested reader is referred to L19b and references therein
for more details.

2.2.1 | BCQM

BCQM, one of the most widely used SD methods, is often
referred to as ‘quantile mapping’, although some use this
term more generally in reference to various distributional
SD methods. It is computed as:

FDf xð Þ=FOh F−1
Mh xð Þ� � ð1Þ

where F is the cumulative distribution function (CDF),
F−1 its inverse and x the Mf value to be downscaled.
Equation (1) is not applicable for novel values, that is, for
Mf values outside the range of Mh values. When this
occurs we use a modification of the standard extrapola-
tion (Deque, 2007), detailed in L19a.

2.2.2 | KDDM

KDDM uses a complex, multi-step algorithm involving
kernel density estimation to smooth Oh and Mh which
have first been standardized to zero mean and unit vari-
ance, separately for each month of each year. Subsequent
integration of the generated distribution functions
followed by inverse standardization yields the desired
transfer functions. We use R code kindly supplied by the
KDDM authors (https://github.com/sethmcg/climod).

2.2.3 | QDM

QDM can be thought of conceptually as using Mf as a
first guess, but modifying it via a correction factor, which
varies by position in the distribution. The correction fac-
tor, while additive for most variables, is multiplicative for
precipitation. Its additive form is:

Df xð Þ=x+ F−1
Oh FMf xð Þð Þ –F−1

Mh FMf xð Þð Þ� �
, ð2Þ

and its multiplicative form is:

Df xð Þ=x X F−1
Oh FMf xð Þð Þ=F−1

Mh FMf xð Þð Þ� �
, ð3Þ

We use R code made available by the QDM authors
(https://github.com/cran/MBC).

2.2.4 | PRAT

PresRat, hereafter referred to as PRAT, is a simple modi-
fication of QDM which preserves the model-predicted
future change in mean precipitation. Each value of Df

computed from (3) is multiplied by a calendar-month
specific correction factor K:

K= �Mf= �Mhð Þ= �Df = �Ohð Þ ð4Þ

where bars indicate climatological means over a specific
calendar-month.

2.2.5 | Configuration options

Although some authors have fixed specific options in
their particular implementation, here we make a distinc-
tion between SD methods and configuration options. We
consider an SD method to be associated with overarching
principle(s) whereas configuration options to be specific
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choices made in implementation. We evaluate configura-
tion choices since in much prior work consequences of
these choices have not been considered. Some of our
motivation stems from Vrac et al. (2016), hereafter V16,
who did assess some configuration options, although not
in a PM setting.

Added complexity of precipitation yields several addi-
tional choices, four of which we consider. The first is
whether to use an additive (A) versus multiplicative scal-
ing (M). Conventional wisdom has dictated the latter for
precipitation as additive correction can yield negative
values—although these can be reset to zero. We consider
the additive option since we are not aware of any prior
studies that have evaluated this approach for precipitation.

Another option is frequency adjustment (freqadj) in
which a threshold (above the US trace value of 0.01 in.)
is chosen yielding the same fraction of dry days in Mh as
found in Oh, by setting Mh values below the threshold to
zero. The same threshold is applied in the future.
Frequency adjustment is aimed at accounting for the
well-known GCM ‘drizzle bias’ (Stephens et al., 2010),
hereafter DBIAS, the widespread tendency for GCMs to
simulate an excess number of small amounts of precipita-
tion compared with real-world observations.

A fundamental issue in precipitation SD is how to deal
with days having zero precipitation. One could ignore
them and apply SD only to non-zero values or SD could be
applied to all values, including the zeros. We introduce
the option ignore0, which when on (off) applies to the for-
mer (latter) case. A further issue arises with ignore0 off,
namely the potential for a large number of identical values
(i.e., zeros). Cannon et al. (2015) added a small random
value (distributed uniformly over [0, trace/2]) to each zero
before downscaling. We refer to this option as below trace
noise (BTN), which can either be on or off.

Note that the four configuration options are not appli-
cable to all of our SD methods. The choice of additive ver-
sus multiplicative is not applicable to BCQM or KDDM by
nature of their algorithms. Furthermore, freqadj and
ignore0 are ‘baked into’ the complex KDDM code. For
QDM and PRAT all four options are viable, which is an
extension to the methodology given by the original authors.

Although we consider four configuration options, our
list is not exhaustive. For example, time windows used
for SD training and evaluation can vary: 12-monthly or
4-seasonally non-overlapping, or overlapping moving
windows of different lengths, to name a few possible
choices. There is a tradeoff: wider windows yield larger
sample sizes for training but narrower ones are better
able to resolve seasonally varying relationships. Win-
dow choice may introduce artefacts (Dixon et al., 2016;
especially Figure 4b). Hence, configuration options
beyond those considered here may have consequences.

2.2.6 | Tail schemes

Special attention is warranted to tails, which present a
greater challenge than the remainder of the distribution.
We examined this issue in considerable detail and have
devised special procedures (L19a) which were evaluated
extensively (L19b). We use the limited tail adjustment
scheme (LIM) as per L19a and L19b. LIM is applied only
to tail values after initial application of any arbitrary SD
method.

For application of LIM the user decides a priori how
many values at the end of the distribution are to be modi-
fied by specification of the parameter tail-length (TLN).
The user also specifies, via parameter NPT, the number
of values to be used in performing the tail adjustment.
Previously (L19b) we found TLN = 10 and NPT = 10
yield good results for temperature. While smaller values
of NPT produce poorer results, increasing NPT beyond
10 generally yields little gain.

Conceptually LIM operates by computing a constant
correction factor from the NPT points and applies it to
the TLN points. For example, with NPT = 5 and TLN =
10 to apply LIM to the right tail the correction factor is
computed using the 11th through 15th largest values and
then applied to the 10 largest values. The correction fac-
tor is either additive, used for most variables such as tem-
perature, or multiplicative, assumed more appropriate for
precipitation. Here our LIM results are multiplicative, fol-
lowing conventional wisdom, with NPT = 10 and TLN =
10, based on L19a. We only apply LIM to the right tail as
left-tail values are small, marginally larger than the trace
value.

2.3 | Evaluation procedure

Evaluation statistics are presented by treatment, which
we define as a combination of an SD approach (one SD
method for either the base algorithm, or additionally
with LIM adjustment in the right tail) and a set of con-
figuration options as detailed in section 2.2.5. Each of
the three 10-year future ensembles is downscaled sepa-
rately and verification statistics are averaged over the
ensembles. SD is performed separately at each gridpoint
and for each of four standard seasons DJF (December,
January, February), MAM, JJA, and SON. Results are
presented mostly as averages over the four seasons with
some limited results given for DJF and JJA. Use of sea-
sons rather than months (as in our earlier works for
daily temperature) is aimed to provide adequate sample
sizes given that for some approaches, the presence of
dry days reduces available sample size, sometimes
substantially.
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Our primary metric is the mean absolute error (MAE)
which we use in two different ways. In the traditional
synchronous application MAE is based on differences
between values of Df and Of occurring on the same day.
We also apply it asynchronously (MAE-ord) such that
paired values of Df and Of represent the same order sta-
tistics. While MAE is a measure of how well SD repre-
sents day-to-day weather variations, MAE-ord measures
how well SD reproduces the statistical distribution of
values. MAE-ord is motivated by guidance provided by
Maraun and Widmann (2018) and Maraun et al. (2019)
regarding statistical model evaluation. Contrasting results
based on these two similar but distinct metrics will help
illustrate issues raised by Maraun (2013) regarding the
stochastic nature of precipitation. After computing MAE
or MAE-ord over a season, or averaging the four seasonal
values, it is converted to a standard skill score (Wilks,
2006; L19a; L19b):

Skill= MAEMf –MAEDfð Þ=MAEMf½ �X100% ð5Þ

We then average skill over all non-ocean gridpoints.
Averaging utilizes the biweight mean (Lanzante, 1996)
which guards against effects of outliers. The biweight is
data adaptive behaving more like the arithmetic mean
for ‘well-behaved’ data or more like the median
otherwise.

As in L19a and L19b we compute separate verifica-
tion statistics for different portions of the distribution
referred to as distributional categories (CAT's): CAT
1 (CAT 9) consists of the lowest (highest) value in the
sample, CAT 2 (CAT 8) the second-third lowest (highest)
values, CAT 3 (CAT 7) the fourth-sixth lowest (highest)
values, and CAT 4 (CAT 6) the 7th–10th lowest (highest)
values. Finally, CAT 5 consists of all values in the sample.
When considering extremes we devote our attention to
the right tail, as values in the left tail are very small.
Some results are presented as averages over the entire
right tail (CAT 6–9), weighted by the number of values in
each category.

Because of the binary nature of precipitation occur-
rence we utilize an additional metric in the form of a
fractional error in the number of dry days, computed sep-
arately for Mf and Df. It is computed as the number of
days in error divided by the total number of days. For
example, in the case of Df, if Df and Of are both wet days
or both dry days there is no error. On the other hand, if
one is wet and the other dry we count this as an error. As
above, given fractional errors for both Mf and Df we com-
pute a skill.

In order to estimate statistical significance we use the
same procedure developed previously, referring the
reader to L19a (especially appendix B) for details, with

only a brief overview here. We first compute the mean
skill over our domain, separately for two SD approaches
of interest. The difference between these two skills is the
quantity for which significance is sought. We perform
two separate Monte Carlo simulations, with 1,000 trials
each to derive a distribution of differences in skill. The
position of the actual difference in this randomly derived
distribution determines the significance level.

The first step in the process is to estimate the spatial
degrees of freedom in order to account for the fact that
gridpoint values are not independent of one another. For
each trial we apply random translational shifts in both
the north–south and east–west directions to the pair of
maps. Next we pattern correlate the original and shifted
pairs of maps and use the distribution of correlations to
infer an effective block size. In the second step, for each
trial we randomly shuffle blocks of gridpoints between
the two original maps and compute a difference in mean
skill between the permuted maps. The distribution of
these differences is used to assess significance. In order to
ensure robust results we report three significances based
on conservative and liberal objective estimates as well as
a very conservative subjective choice (L19a). We modify
the subjective choice of effective number of blocks of
4 × 2 (latitude by longitude gridpoints) used in our earlier
works for temperature to 7 × 4 for precipitation based on
Huang et al. (1996) and Richman (1986).

3 | RESULTS

3.1 | Evaluation of skill over the entire
distribution

Table 1 summarizes skill (based separately on MAE and
MAE-ord) averaged over the entire domain for various
SD treatments. Rather than considering every possible
combination, we limit to a manageable number from
which we can draw conclusions considered representa-
tive of the class of SD methods examined in our PM
framework. Our shorthand for treatments uses the first
letter of the SD method followed by the ordinal row num-
ber from the first column of Table 1 which specifies con-
figuration options. During discussion we also refer to
Table 2, with results from a limited number of signifi-
cance tests, pairwise between two treatments. For conve-
nience, Table 2 lists group numbers (i.e., G1–G7) for sets
of related significance tests.

The most noteworthy aspect of Table 1 is the clear dis-
tinction between skills based on MAE versus MAE-ord,
with the former substantially lower. Higher skill for MAE-
ord reflects the fact that while quantile mapping substan-
tially improves the distribution of values compared with
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the raw GCM output, it exhibits less skill in reproducing
the day-to-day weather sequencing, as measured by MAE.
This can be explained by the arguments made by Maraun
(2013) that attempting to bridge the scale mismatch
between OBS and GCM using a deterministic method
such as quantile mapping yields results with a corrupted
time sequence. As such, MAE skill levels are disappoint-
ingly low (~20–25%), about half that found for tempera-
ture in our earlier work (L19a; L19b). Sub grid-scale
variability, which is at the core of the problem, is much
less of an issue for temperature than it is for precipitation.
It is worth noting that the relative ordering of skills by
treatment are generally quite consistent between the two
metrics—the correlation of MAE and MAE-ord skills
across treatments exceeds 0.9 for CAT5 and CAT6-9.
Thus, comparisons between treatments—one of the main
motivations for this work—are not much affected by the
choice of metric. For the remainder of this work we draw
conclusions based primarily on MAE-ord.

Next we examine overall skill (CAT 5) for four differ-
ent configurations of BCQM (B1–B4) based on

combinations of freqadj on/off and ignore0 on/off. BCQM
was chosen for this purpose since it is the simplest of our
methods, has the fewest possible options, and is a very
commonly used distributional SD method. Three of the
configurations (B2–B4) yield skill of the same order
whereas B1 performs much more poorly. Significance
tests in Table 2 for group G1 indicate that the outlier
treatment (B1) is highly significantly worse than the
others while the two better treatments (B2 and B4) are
not different from one another. The key factor is that the
better treatments have ignore0 off. However, use of
freqadj can substantially mitigate the effect of having
ignore0 on (B3), although this treatment is still signifi-
cantly worse than the two better treatments. Below
(3.5.2) we explore the reasons for this behaviour,
explaining why it is configuration-specific but not SD
method-specific. Finally, we consider K5 which has skill
a bit lower than B4, but not significantly so.

Next we examine results based on a variety of treat-
ments for QDM, chosen for this purpose since previously
(L19b), for temperature, it was found to be as good or

TABLE 1 Skill (%) averaged over the domain for various SD methods and configurations (T/F/I/B) referenced by treatment number

(first column). CAT 5 is for the entire distribution whereas CAT 6–9 is averaged over the right tail. CAT 6–9 L is based on the LIM

adjustment averaged over the right tail

MAE MAE-ord
Method T F I B CAT 5 CAT 6–9 CAT 6–9 L CAT5 CAT 6–9 CAT 6–9 L D-DRY

1 BCQM – – I – −1.7 −42.0 −33.2 1.7 0.0 7.4 13.3

2 BCQM – F – – 22.2 −20.1 −9.0 59.1 24.5 28.8 32.6

3 BCQM – F I – 20.4 −22.5 −12.0 52.5 22.0 28.1 30.3

4 BCQM – – – – 22.9 −20.0 −9.3 60.7 24.6 30.0 34.2

5 KDDM – F I – 21.4 −18.4 −8.6 56.3 27.2 31.4 34.3

6 QDM M – – B 21.8 −15.6 −6.2 56.2 30.9 33.9 32.6

7 QDM M F I – 20.4 −16.3 −7.5 52.8 28.9 31.2 30.4

8 QDM M F – B 20.7 −15.6 −6.5 53.0 30.9 31.9 26.8

9 QDM M F – – 20.2 −15.6 −6.2 53.2 30.9 33.9 31.2

10 QDM M – – B 21.5 −15.6 −6.3 55.9 30.9 33.9 31.5

11 QDM M – – – 21.6 −15.6 −6.2 55.8 30.9 34.0 31.6

12 QDM A F I – 20.2 −12.8 −6.3 51.8 30.2 30.1 30.4

13 QDM A F – B 15.3 −13.6 −5.4 47.7 30.5 25.1 27.2

14 QDM A F – – 14.7 −13.6 −6.3 47.6 30.5 31.6 32.2

15 QDM A – – B 15.4 −13.6 −5.5 49.5 30.4 25.1 30.7

16 QDM A – – – 15.4 −13.6 −6.3 49.3 30.5 31.5 30.2

17 PRAT M F I – 21.1 −12.7 −5.4 53.8 30.2 30.4 30.5

18 PRAT M F – B 22.9 −8.9 −2.3 58.6 33.2 32.3 31.4

19 PRAT M – – B 23.8 −8.8 −2.2 60.7 33.0 32.1 32.0

Note: Skill is based on three different error metrics: MAE, MAE-ord or dry day frequency (D-DRY). Regarding configuration options: T (QDM and PRAT only)

is type of approach, M (multiplicative) or A (additive); F is frequency adjustment (F for on, − for off); I is ignore0 (I for on, − for off); B (QDM and PRAT only)
is below trace noise (B for on, − for off). All treatments use as the dry day cutoff the US trace value of 0.01 in. except Q6 which uses 0.05 mm, the default value
from the authors of the QDM code.
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better than any of the tested distributional methods, and
has the most configuration options. In the literature, con-
ventional wisdom from a variety of SD methods suggests
that multiplicative scaling rather than additive adjustment
should be used for precipitation. One of the reasons for
this is that the additive approach may result in negative
precipitation—which then must be reset to zero. Since
this assumption is rarely tested we have applied a number
of such treatments with different configurations. Indeed,
the multiplicative approach is superior in all cases. Not
coincidently the best approach for QDM is Q6, the default
configuration in the code made publicly available by the
creators of QDM (Cannon et al., 2015). However, while

the multiplicative and additive QDM treatments tend not
to differ significantly from one another, the best of the for-
mer group (Q6) is marginally significantly better than the
best of the latter group (Q12) as seen in G2. Finally we
note that the best versions of BCQM (B4) and QDM
(Q6) do not differ significantly (G2).

The final method under consideration is PRAT,
which (see above) is a variant on QDM. Having used
QDM to explore various configurations we limit the num-
ber of PRAT treatments. Not surprisingly the best (P19)
has the same configuration as the best QDM (Q6).
Although P19 is not better than B4, it is marginally sig-
nificantly better than both Q6 and K5 (see G3), and

TABLE 2 Significance level (%)

testing the hypothesis that there is no

difference in skill between the two

specified SD treatments

Group Nblon × Nblat Significance (%) Treatments Categories

G1 7 × 4 2 × 1 3 × 2 0.0 6.0 0.0 B4 × B1 5

G1 7 × 4 4 × 3 7 × 4 0.2 5.1 0.2 B4 × B3 5

G1 7 × 4 6 × 3 10 × 5 62.9 68.7 50.1 B4 × B2 5

G1 7 × 4 6 × 3 8 × 5 11.3 20.6 6.4 B4 × K5 5

G2 7 × 4 5 × 3 9 × 5 85.2 92.1 82.8 Q12 × Q14 5

G2 7 × 4 6 × 3 10 × 5 10.9 20.2 3.7 Q6 × Q7 5

G2 7 × 4 7 × 4 12 × 7 30.7 30.7 9.8 Q6 × Q9 5

G2 7 × 4 6 × 3 9 × 5 6.6 14.6 3.3 Q6 × Q12 5

G2 7 × 4 6 × 4 10 × 6 14.2 15.4 3.6 B4 × Q6 5

G3 7 × 4 5 × 3 7 × 5 0.5 2.7 0.0 P19 × P17 5

G3 7 × 4 7 × 4 12 × 7 7.5 7.5 0.6 P19 × Q6 5

G3 7 × 4 6 × 4 9 × 6 5.3 6.7 1.5 P19 × K5 5

G4 7 × 4 2 × 2 5 × 3 0.0 9.7 0.1 B4 × B1 6–9

G4 7 × 4 4 × 3 10 × 5 32.5 54.6 28.9 B4 × B3 6–9

G4 7 × 4 4 × 3 10 × 5 41.5 61.8 34.7 B4 × B3 6–9 LM

G4 7 × 4 4 × 3 10 × 5 8.8 26.7 5.4 B4 × B4 6–9 vs. 6–9 LM

G5 7 × 4 5 × 2 7 × 5 50.0 68.6 44.3 P19 × Q6 6–9

G5 7 × 4 4 × 3 9 × 5 43.5 62.3 38.8 P19 × B4 6–9 LM

G5 7 × 4 5 × 2 7 × 5 50.6 72.1 46.9 P19 × Q6 6–9 LM

G6 7 × 4 2 × 1 4 × 3 0.0 0.1 0.0 B4 × B1 DD

G6 7 × 4 7 × 4 13 × 7 12.4 12.4 0.9 B4 × B3 DD

G6 7 × 4 7 × 5 15 × 8 52.4 44.8 22.2 B4 × B2 DD

G7 7 × 4 9 × 5 14 × 9 44.6 30.2 15.2 K5 × P19 DD

G7 7 × 4 9 × 5 14 × 9 45.9 32.8 16.4 B4 × P19 DD

Note: For MAE-ord, skill is either for the entire distribution (CAT 5) or as a weighted average over the right
tail (CAT 6–9). Limited tail adjustment is indicated by LM. For DD, skill is based on dry-day metric (D-

DRY). Paired comparisons are aggregated into groups which are considered together in the discussion in the
text. For each comparison there are three probabilities (left to right) corresponding to three effective grid
sizes. The grid sizes (Nblon × Nblat) are expressed as the number of blocks in the longitudinal and
latitudinal dimensions. For example, 7 × 4 indicates a grid composed of 28 blocks. During Monte Carlo
simulation each block (consisting of multiple gridpoints) is shuffled as a unit. The leftmost is a subjectively

determined grid dimension and is likely too small. The centre (right) dimensions are based on more
conservative (liberal) criteria derived from Monte Carlo analysis (see Section 2.3). Treatments consist of a
downscaling method identified by the leading letter (B = BCQM, K = KDDM, Q = QDM, and P = PRAT)
and configuration options in reference to the ordinal row number given in Table 1.
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certainly the poorest version of PRAT (P17) which has
ignore0 on.

Next we consider the effect of the BTN option.
Although we have not made extensive tests, there are sev-
eral pairings that differ only in the BTN setting (Q6/Q11,
Q8/Q9, Q13/Q14, and Q15/Q16). In general there is very
little difference.

Finally, Table 3 gives a limited comparison between
our findings and those involving four configuration sce-
narios of V16: Positive Correction (PC), Direct Approach
(DA), Threshold Adaptation (TA), and Singularity Sto-
chastic Removal (SSR). These are analogous to our config-
urations: PC (freqadj = off, ignore0 = on), DA (freqadj =
off, ignore0 = off, BTN = off), TA (freqadj = on, ignore0 =
on), and SSR (freqadj = off, ignore0 = off, BTN = on).
Although V16 utilized a single downscaling method
(CDFt; Michelangeli et al., 2009), not used here because of
sub-par performance (L19b), our use of multiple methods
enables us to demonstrate much greater sensitivity of
results to configuration rather than SD method.

In agreement with V16 we find that, of the methods
tested here using our PM experimental design, PC is by far
the worst approach with the other three yielding fairly sim-
ilar results, although TA may be slightly poorer than DA
and SSR. We also agree that SSR (also used by Zhang et al.,
2009 and Cannon et al., 2015) is preferable because of its
flexibility in dealing equally well when Mh has more wet
days than Oh (i.e., the DBIAS) as well as the inverse. Recall
that use of freqadj can only remedy the DBIAS not the
inverse. The SSR approach is also simpler in that it avoids
having separate corrections for occurrence and amount.

3.2 | Evaluation of skill in the tails of the
distribution

Skill based on MAE-ord averaged over the right tail using
the base algorithm (CAT 6–9 in Table 1) is about half that

for CAT 5 (~25–30% vs. 50–60%). Other than the B1 out-
lier, differences in CAT 6–9 skill between treatments are
generally small and few if any are likely to be significantly
different as evidenced by the B4 versus B3 comparison
(G4) which exhibits fairly typical differences. Application
of the LIM adjustment yields small improvements which
are likely to be mostly insignificant with again not much
difference between treatments (G4). Furthermore, tail
skill for our preferred treatment (P19) does not differ sig-
nificantly from that of other leading treatments (G5).

Skill based on MAE shows a very different pattern.
While CAT 6–9 skill is much poorer than for CAT 5, LIM
yields substantial improvement. However, skill in the
tails for both the basic algorithm as well as LIM adjust-
ment is negative, indicating they provide no improve-
ment over the raw GCM. Here the results in the right tail
are strikingly different than was found previously for
temperature (L19b) for which skill in the tails was com-
parable to the whole distribution.

For further perspective on tail performance Figure 1
shows MAE and MAE-ord, along with their associated

TABLE 3 Comparison of MAE-ord skill (%) across V16

configuration scenarios: Positive correction (PC), threshold

adaptation (TA), direct approach (DA), and singularity stochastic

removal (SSR)

Scenario Treatment BCQM QDM PRAT

F I B

PC – I – 1.7 (B1)

TA F I – 52.5 (B3) 52.8 (Q7) 53.8 (P17)

DA – – – 60.7 (B4) 55.8 (Q11)

SSR – – B 55.9 (Q10) 60.7 (P19)

Note: Skill values have been extracted from Table 1 for configurations that
match those of V16 with corresponding treatments from Table 1 given in
parentheses.
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skills, for P19 as a function of distributional category.
High skill in the left tail is of little practical importance
since the values there are quite small. Aside from consis-
tency with the general points made above, this figure
demonstrates the rapid increase in error going farther out
in the right tail. Although P19, likely as good as any of
the tested treatments, shows considerable improvement
over the raw GCM, errors in the tail (representing
domain averages) are still quite large ~5–20 mm.

3.3 | Evaluation of dry-day skill

The right-most column of Table 1 gives skill based on the
dry-day error metric. Other than for B1, which is highly
significantly worse than other treatments (G6), differ-
ences tend to be not too dissimilar. This is indicated by
the fact that while P19 differs by more than two from
both B4 and K5, these differences are not even close to
being significantly different (G7). Note that the actual

fractional error (not shown) does not differ much
between SD treatments, with that for Mf ~0.27 and that
for Df ~0.18.

3.4 | Spatial patterns of skill and MAE

The pattern of DJF skill for CAT 5 in Figure 2a shows
high skill over much of the eastern and western portions
of the domain with lower skill in central portions. How-
ever, in the mountainous west there are some locations
with very high skill, often in close proximity to locations
with low or negative skill. This phenomenon is explored
in detail below (3.5.1). For CAT 5 during JJA the areas of
high skill in the western U.S. are greatly reduced, with
too little precipitation for analysis in portions of this
region, and moderate skill in much of the Midwest. A
curious feature is a strip of lower skill extending from the
Gulf coast of Mexico up through the mid-Atlantic. Our
earlier work (Dixon et al., 2016; Lanzante et al., 2018)

FIGURE 2 Maps of P19 skill (%) based on MAE-ord for CAT 5 (a and b) and the average of CAT 6–9 (c and d) for DJF (a and c) and JJA

(b and d). White areas have too little data for analysis [Colour figure can be viewed at wileyonlinelibrary.com]
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identified lower skill for temperature downscaling in
coastal regions. Although diagnosis of this feature is
beyond the scope of this work the mechanistic explana-
tions from our earlier work would not seem applicable
here. In the tails (Figure 2c,d) the patterns are roughly
similar to their corresponding CAT5 patterns, but with a
considerable reduction in overall skill. As a consequence,
substantial areas of the domain have near-zero or nega-
tive skill.

For MAE-ord the DJF patterns for CAT 5 and CAT
6–9 (Figure 3a,c) both have higher values over the South-
east and along the extreme West Coast, which correspond
roughly to the DJF climatology (not shown). For JJA
while the CAT 6–9 pattern (Figure 3d) also corresponds
reasonably well to the JJA climatology (not shown), the
CAT 5 pattern (Figure 3b) does not, with largest errors in
the higher latitudes of interior North America. The
domain-averaged MAE-ord seen in Figure 1 of ~5 mm
for CAT 6–9 masked the strong regionality seen in Figure
3d where the tail errors along the East Coast, and particu-
larly the Southeast are typically several times larger

~20 mm, even in areas exhibiting considerable skill
(Figure 2d).

There is an interesting contrast between Figures 2b
and 3b that relates to precipitation frequency. While low-
est skill is found both in the mountainous West and the
Northern Interior, the former (latter) has relatively low
(high) MAE-ord. As illustrated below (3.5.2), having a
very large number of dry days (i.e., zero values) compli-
cates distributional mapping. The extreme aridity of the
Far West results in either an insufficient sample for anal-
ysis or very small errors, while the Interior has just a bit
more total and frequency of precipitation to trigger the
complications.

3.5 | Case studies

3.5.1 | Jupiter and Coaldale

The mountainous West has some distinctive variations in
skill and MAE-ord characterized by sharp gradients

FIGURE 3 As in Figure 2 except for MAE-ord (mm) [Colour figure can be viewed at wileyonlinelibrary.com]
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aligning with topography (Figures 2a and 3a). In the
West, the basic nature of this pattern for CAT 5 is similar
among the four SD methods and all seasons (not shown)
except JJA which differs somewhat due to climatologi-
cally much drier conditions.

These variations can be explained in terms of interac-
tion between topography and nonstationarity introduced
by climate change. To illustrate this, two relatively nearby
points are chosen for which the behaviour is strikingly
different. Near Jupiter, CA (Figure 4), CAT 5 MAE-ord
skill for P19 is highly negative (−62.0%) yet at a gridpoint
near Coaldale, NV (Figure 5), skill is impressively high
(90.9%). Here the use of different seasons and members

(see captions Figures 4 and 5) was made to accentuate
the disparity, but is not crucial to the conclusions.

Jupiter is upwind of the Sierra Nevada in a region of
rapidly rising elevation from west to east whereas Coaldale
is downwind on the plateau. As a result, Jupiter is located
near an orographically forced climatological local maxi-
mum of precipitation while Coaldale is near a climatologi-
cal minimum. Accordingly, for Jupiter (Coaldale) the much
larger GCM footprint encompasses areas of less (greater)
precipitation in the surrounding areas. As seen in Table 4
at Jupiter (Coaldale) mean precipitation of OBS is greater
(less) than GCM. Although the climate change signal at
both locations is that of drying, this effect is more
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pronounced at Jupiter, which, since it is wetter, has more
to lose via climate change.

A better understanding is had by examining quantile-
quantile (qq) plots at the two locations. These plots are
like traditional x-y plots except that instead of each x-y
pair coming from the same point in time, they come from
the same relative location in their respective distribu-
tions. For example, the right-most (left-most) point con-
sists of the maximum (minimum) x-value paired with the
maximum (minimum) y-value. To complement the qq
plots we also show corresponding plots of CDF curves.
For added clarity, both types of plots are shown zoomed
in (top) on the most salient features as well as over the
full range (bottom) of values (with nonlinear scaling).

The qq plots (Figures 4a,c, 5a,c) consist of three cur-
ves, each with GCM on the abscissa and OBS or DWN on
the ordinate; black (red) depicts the historical (future)
relationship. Thus, black represents what is available to
‘train’ the downscaling method while red represents
‘truth’. The cyan curve represents what the SD method
generated as its rendering of the future. One can think of
the green line, with a slope of 1, as the starting point—
downscaling moves from it to the cyan curve—with the
best possible result lying on the red curve. The point at
which curves cross y = x shows where the bias changes
sign. For points above (below) the green line OBS is
greater (less) than GCM. Changes from black (historical)
to red (future) indicate non-stationarity.

In the case of Jupiter (Figure 4a,c) the downscaled
(cyan) departs significantly from the truth (red) for most
of the distribution. To understand the downscaling opera-
tion we use QDM—the results for which (not shown) are
quite similar, only slightly worse. However, the basic
principles apply to any of the methods used herein oper-
ating via analogous bias correction principles. Downscal-
ing via QDM consists of using Mf as a ‘first guess’ and
then modifying this through a multiplicative factor
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TABLE 4 Climatological mean daily precipitation (mm�day−1)
at Jupiter CA (38.1oN, 120.2oW; member three during SON) and

Coaldale NV (37.9oN, 117.7oW; member two for DJF)

Mh Oh Mf Of

Jupiter 1.63 3.23 0.80 1.39

Coaldale 2.60 0.59 1.70 0.50
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expressed as the ratio of values Oh/Mh for a given percen-
tile in their respective distributions (see Equation (3)).
The percentile is that of Mf from its distribution.

At first glance it seems curious that downscaling does
so poorly given that the red curve is not that different
from the black one. But these curves only represent rela-
tive relationships. The key lies in the fact that the distri-
butions have shifted significantly towards lower values in
the future (Figure 4b,d) due to drying (Table 4). Another
important factor is that the black curve shifts from a local
ratio (OBS to GCM) much larger than 1 (i.e., above the
green line) at the high end of the distribution to values
less than 1 at the low end. This ratio is proportional to
the multiplicative correction factor applied by QDM.
Note that ratio values less than 1 at the very low end of
the distribution are to be expected as per the well-known
DBIAS which results from the GCM having a larger foot-
print than the OBS.

Consider an arbitrary value of Mf which is to be
downscaled. The correction factor (Equation (3)) is deter-
mined by applying the percentile of this value from the
Mf distribution to the Oh and Mh distributions. However,
because of considerable drying from historical to future
periods the quantile (i.e., amount of precipitation)
corresponding to this percentile will be higher in the his-
torical than the future periods. Thus, the correction factor
which is applied will be biased towards the high end of
the historical distributions. Since, as we noted above, the
Oh/Mh ratio increases with increasing precipitation
amount, the resulting correction factor will be too large.

There is an equivalence between the explanations
based on qq plots and CDFs (Figure 4b,d). Note in Figure
4a the cross-over of the ratio Oh/Mh occurs at ~3 mm
where the black curve intersects the green line. In the
CDFs the Oh and Mh curves cross at ~3 mm (having a
CDF value ~86%), with the Oh curve to the left of the Mh

curve for values less than ~86% and vice versa. Similarly,
the Df curve is to the left of the Mf curve for CDF values
less than ~86% and vice versa.

Next consider Coaldale (Figure 5), located in the
orographically induced down-wind ‘rain shadow’ region.
The qq curves are below the green line due to the DBIAS
but unlike Jupiter they do not cross above it for higher
values because the DBIAS operates only for low values of
precipitation. For larger amounts of precipitation, espe-
cially convective, a localized intense area of precipitation
is more likely surrounded by less intense precipitation,
leading to in effect an inverse of the DBIAS. The fact that
Coaldale is so arid (compare the y axis extents in Figures
4a,c and 5a,c) precludes it from reaching the inverse
DBIAS regime which Jupiter is able to attain. Further-
more, although there is drying, it is less dramatic than at
Jupiter. The combination of the drying and percentile

shift effect does force the cyan curve above the black
curve, just as was the case for Jupiter, but the amount is
much less. But this shift has a positive effect by pushing
the cyan curve closer to the red curve, in contrast to Jupi-
ter in which it pushed it away from the red curve. In
passing we point out that the discontinuity in the cyan
curve is a reflection of SD adjustment for the DBIAS
(i.e., converting some wet days to dry days). It is more
prominent here because of the very dry climate which
results in a ‘zooming in’ on the low end of the
distribution.

In summary, drying due to climate change and the
inevitable DBIAS operate in opposite fashion between
the two locations. At Jupiter they conspire to yield a poor
downscaling result. Because the magnitudes are smaller
at Coaldale they have a smaller effect, but fortuitously
they combine to produce an exceptionally good result.

3.5.2 | Alpena

Motivation for this example comes from results shown
earlier (Table 1) comparing four variants of BCQM.
Treatment B1, having ignore0 on and frequency adjust-
ment off produced much worse results. Maps not shown
here, show a considerable similarity between patterns of
seasonal variation in B1 skill and patterns of seasonal
variation in climatological amount and frequency of pre-
cipitation. Namely, relatively low skill for B1 corresponds
with climatological small amounts and daily frequencies
of precipitation, with poorest performance during JJA.
Furthermore, seasonal patterns of skill for our favoured
approach of P19 are quite similar to those for the better
performing variants of BCQM (B2-B4).

The qq plots in Figure 6a,c for a point near Alpena,
KS typify the poor performance of B1. The relationship
between OBS and GCM is similar between the historical
(black) and future (red) periods. When configured opti-
mally with ignore0 off, BCQM (B4) and PRAT (P19) yield
similar and reasonable results (violet and cyan circles,
respectively) that follow the Oh/Mh and Of/Mf curves
quite well. On the other hand, turning ignore0 on, with
all other settings the same yields again similar, but this
time extremely poor results for both BCQM and PRAT
(violet and cyan pluses, respectively). It is striking that
skill at this location for B1 is—26.9% while that for B4
is 52.9%.

In our PM experimental design, we find that poor per-
formance with ignore0 on and frequency adjustment off
is not downscaling method specific but instead is much
more likely to occur when two conditions are met: (a) a
large difference in dry day frequency between GCM and
OBS and (b) high dry day frequency (~80% or greater). As
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shown in Table 5, at Alpena during both time periods
condition (a) is met with a disparity of ~18–24%. Differ-
ences ~10–20% are common at a majority of gridpoints,
and in some locations/seasons are as high as ~40–75%.
Condition (b) is met since more than 80% of the days are
dry for OBS in both the historical and future periods.

The reason for the problem (B1) is that when (a) is
met mapping occurs between disparate portions of the
OBS and GCM distributions. Condition (b) exacerbates
the problem by reducing the sample used to define the
distributions. For example (Table 5), at Alpena the
upper 42.8% of the Mh distribution is mapped to the
upper 18.9% of the Oh distribution with ignore0 on and

frequency adjustment off. However, if frequency adjust-
ment was invoked with ignore0 on, the upper 18.9% of
both distributions would be used in the mapping.
Finally, if both options were off then 100% of both dis-
tributions would be used in the mapping. As seen in
Table 5, an additional consequence of the more equita-
ble mapping (B4) is the good representation of precipi-
tation frequency (89.5 vs. 87.4) as opposed to the
mismatched case (B1) where a large DBIAS remains
(64.8 vs, 87.4).

We can visualize the mechanisms for the poor perfor-
mance of B1 via the qq plot for Alpena (Figure 6a,c). The
SD ‘training relationship’ (black) is such that for the
upper portion of the distribution the ratio of Oh to Mf

monotonically increases. This ratio diminishes at the
lower end to below 1 as per the DBIAS. Because there are
many more wet days for Mh than Oh (Table 5), as per
condition (a) above, during training, values of Mh are sys-
tematically mapped to inappropriately large values of Oh,
for which the Oh/Mh ratio is biased too large. Conse-
quently SD systematically overestimates precipitation for
a given value of Mf. Note how this overestimation is simi-
lar to what was seen above at Jupiter (3.5.1), although
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TABLE 5 Climatological daily dry day frequency (%) at

Alpena, KS (39.9oN, 99.8oW; member one during JJA) for OBS,

GCM, and two configurations of BCQM (B1 and B4) during the

historical and future periods

OBS GCM B1 B4

Historical 81.1 57.2

Future 87.4 69.1 64.8 89.5
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the ultimate cause was different (climate change, rather
than a mismatch in precipitation frequency).

4 | DISCUSSION AND
CONCLUSIONS

We have compared a number of distinct distributional
downscaling methods as applied to daily precipitation in
a Perfect Model context as a follow-up to our recent stud-
ies involving daily maximum temperature (L19a; L19b).
Applying a more stringent metric (MAE) geared towards
assessing agreement in day-to-day variability yields skill
~20–25% which is barely half of that found in earlier
studies for temperature. Because of the more stochastic
nature of precipitation (Maraun, 2013) we emphasize
results based on a metric that assesses agreement of dis-
tributions (MAE-ord). By this metric skill is ~50–60%
overall and about half of that in the right tail. This is dis-
tinctly different than for temperature for which skill in
the tails could be boosted comparable to that for the
remainder of the distribution (L19a; L19b).

Although downscaling overall yields useful MAE-ord
skill (~30–35%) for values in the right tail of the distribu-
tion, there are considerable seasonal and regional varia-
tions. More importantly, even when skill is attained the
magnitude of the errors can be considerable, for example
~15–25 mm in the southeastern U. S. during summer.
We remind the reader that our Perfect Model design is
somewhat idealized—accounting only for the mismatch
in spatial scale between OBS and GCM but not for differ-
ences in the underlying climate states – thus, real-world
downscaling performance may differ.

Compared with temperature, downscaling of precipi-
tation via distributional methods is more complex having
more configuration choices. Certain of these may be
more consequential than the choice of SD method. These
configuration choices result from the fact that precipita-
tion consists of two aspects: (a) binary occurrence of pre-
cipitation (dry vs. wet days) and (b) distribution of
precipitation conditional on occurrence. An equivalent
but simplifying approach is to treat dry days as having
zero precipitation, yielding a single distribution. Ulti-
mately how these zero values are handled is crucial.

In our PM framework the poorest performance
occurs when SD methods train and apply a transfer
function to only the non-zero daily precipitation values,
without a frequency adjustment to account for the
DBIAS. However, the use of a frequency adjustment
when downscaling only the non-zero values largely rem-
edies the situation. The best configuration occurs when
downscaling all values (zeros included) without a fre-
quency adjustment. With regard to the use of

configuration options our findings are in general agree-
ment with V16.

Using optimal configurations, comparisons between
several different downscaling methods do not always
yield conclusive differences. PresRat, which involves a
tweak to QDM was found to be comparable to BCQM
while KDDM and QDM were found to be comparable to
one another; the former pair were deemed marginally
statistically significantly better than the latter pair.

For diagnostic purposes we have provided some exam-
ples which highlight the mechanisms responsible for good
or bad performance in our PM framework. Poor perfor-
mance can result from non-stationarity introduced via cli-
mate change, as was the case at Jupiter. Surprisingly,
especially good performance can result when non-
stationarity due to climate change by chance compensates
for a deficiency in the downscaling method (Coaldale)—
thus, two wrongs can make a right. Finally, when exclud-
ing all dry days from the SD, we demonstrated that for
locations (such as Alpena) having infrequent precipitation
(typically less than 20% of the days) the nearly ubiquitous
DBIAS leads to an inappropriate mapping between the
OBS and GCM distributions leading to very poor
performance.

Our case studies identified an intrinsic weakness of
distributional methods when applied to precipitation.
Because of the DBIAS, for low values of precipitation the
ratio of Oh to Mh will be less than 1. However, for larger
values, often the bulk of the distribution, typically this
ratio will be greater than 1 because of the spotty nature
of precipitation and the larger GCM footprint. This effect
is accentuated in convective regimes. Furthermore, this
ratio often increases with increasing precipitation
amount, again due to convection which tends to produce
greater, more isolated bullseye values.

An inherent weakness of the class of quantile map-
ping methods is that while distributional methods oper-
ate via mappings between relative positions within
distributions, there are certain physical constraints that
operate with regard to absolute amounts of precipitation
via spatial scale. A perturbing factor such as climate
change (Jupiter) or excessively infrequent precipitation
(Alpena) can distort the mapping in a manner that
yields a physically inconsistent mapping—that is, where
the DBIAS and its inverse get mapped to each other.
Other perturbing factors, which have yet to be identi-
fied, may exist as well. The underlying characteristics of
precipitation which often lead to poor results are not
inherent to other better behaved variables such as
temperature.

It is intriguing that for some seasons and locations
errors in the right tail can be quite large even when
downscaling has demonstrable skill. One wonders what
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affect these errors might have on extreme value analysis
(EVA) of precipitation, which has frequently been
applied to raw GCM output? Recently Lopez-Cantu et al.
(2020) performed EVA on CONUS precipitation and
found large differences among five downscaled datasets.
In future work we intend to explore this issue in a PM
context.

Finally, as a bridge back to our earlier PM SD evalua-
tions for daily maximum temperature (tasmax), which
were based solely on MAE skill, here we have computed
MAE-ord skill for tasmax for a limited number of cases
from L19b. In this comparison we report only the aver-
ages of three SD methods that correspond most closely to
B4, Q6 and K5. For the basic approach for CAT5, going
from MAE to MAE-ord skill (%) increases from ~42 to 67
for tasmax compared with ~22 to 58 for precipitation (see
Table 1). Using the LIM adjustment and averaging over
the tail (CAT6-9) skill increases from ~46 to 57 for tasmax
compared with approximately −8 to 32 for precipitation.
Hence, the improvement in skill based on MAE-ord over
that for MAE is greater for precipitation than tempera-
ture as expected given the more stochastic nature of the
former. Furthermore, the improvement in the tails is
much greater for precipitation, even though tail perfor-
mance is much poorer compared with overall (CAT5)
performance for precipitation than temperature.
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